2

Practice

Form K

Slopes of Parallel and Perpendicular Lines

For Exercises 1 and 2, are lines 1_1 and 1_2 parallel? Explain.

Write an equation of the line parallel to the given line that contains C.

3.
$$C(5,-2)$$
; $y = -5x + 3$

4.
$$C(8, 1)$$
; $y = 2x + 6$

5.
$$C(4,3)$$
; $y = -\frac{1}{4}x + 3$

6.
$$C(0, 6); y = \frac{2}{3}x + 3$$

Rewrite each equation in slope-intercept form, if necessary. Then determine whether the lines are parallel. Explain.

7.
$$v = x + 8$$

$$x-2v=4$$

8.
$$2y + 6x = 18$$

$$4y + 12x = 24$$

9.
$$4v - 3x = 20$$

$$2y = \frac{3}{2}x + 4$$

Use slopes to determine whether the opposite sides of quadrilateral WXYZ are parallel.

10.
$$W(-1, -1), X(-3, -1), Y(-2, 4), Z(2, 3)$$

11.
$$W(-1, 1), X(2, 4), Y(4, 1), Z(1, -2)$$

12.
$$W(3, 1), X(5, -4), Y(0, -4), Z(-2, 0)$$

13.
$$W(-1, -1), X(2, -4), Y(0, -5), Z(-3, -2)$$

Practice (continued)

Form K

Slopes of Parallel and Perpendicular Lines

For Exercises 14 and 15, are 1₁ and 1₂ perpendicular? Explain.

14.

15.

Write an equation of the line perpendicular to the given line that contains D.

16.
$$D(6, 2)$$
; $y = -3x + 5$

17.
$$D(0,-3); y = \frac{1}{2}x - 7$$

18.
$$D(-8,1)$$
; $y = -\frac{2}{3}x + 4$

19.
$$D(2, 2)$$
; $y = 5x + 3$

20. Think About a Plan Line 1_1 contains (-2, 1) and (4, 3) and line 1_2 contains (5,3) and (3,g). What value of g makes 1_1 and 1_2 perpendicular?

For 1₁ and 1₂ to be perpendicular, what must be true of their slopes?

What equation is true if $1_1 \perp 1_2$?

21. A classmate plotted the following points: A(-3, 2), B(-1, 4), and C(1, 2). Where should the classmate plot point D so that the quadrilateral formed has perpendicular sides?

22. Open-Ended Write the coordinates of a set of points which can be found on a line perpendicular to the line containing points A(5, 3) and B(8, 5).

Practice

Form K

Slopes of Parallel and Perpendicular Lines

For Exercises 1 and 2, are lines ℓ_1 and ℓ_2 parallel? Explain.

(3, 2)

Yes; both lines have a slope of $\frac{1}{2}$.

No; slope of ℓ_1 is $-\frac{9}{2}$ and slope of ℓ_2 is -4.

Write an equation of the line parallel to the given line that contains C.

3.
$$C(5,-2)$$
; $y = -5x + 3$

$$y = -5x + 23$$

5.
$$C(4,3)$$
; $y = -\frac{1}{4}x + 3$

$$y=-\tfrac{1}{4}x+4$$

4.
$$C(8, 1)$$
; $y = 2x + 6$

$$y=2x-15$$

6.
$$C(0,6)$$
; $y=\frac{2}{3}x+3$

$$y = \frac{2}{3}x + 6$$

Rewrite each equation in slope-intercept form, if necessary. Then determine whether the lines are parallel. Explain.

7. y = x + 8

$$x - 2v = 4$$

 $y = \frac{1}{2}x - 2$; No; slope of first y = -3x + 9; line is 1 and slope of second y = -3x + 6; yes; both

8. 2y + 6x = 18

$$4y + 12x = 24$$

lines have a slope of -3.

9. 4y - 3x = 20

$$2y = \frac{3}{2}x + 4$$

 $y = \frac{3}{4}x + 5$; $y = \frac{3}{4}x + 2$;
yes; both lines have a

Use slopes to determine whether the opposite sides of quadrilateral WXYZ are parallel.

10. W(-1, -1), X(-3, -1), Y(-2, 4), Z(2, 3) no

11. W(-1, 1), X(2, 4), Y(4, 1), Z(1, -2) ves; $\overline{WX} \parallel \overline{ZY}$

12. W(3, 1), X(5, -4), Y(0, -4), Z(-2, 0) no

13. W(-1, -1), X(2, -4), Y(0, -5), Z(-3, -2) yes; $\overline{WX} \parallel \overline{ZY}$ and $\overline{WZ} \parallel \overline{XY}$

Practice (continued)

Form K

Slopes of Parallel and Perpendicular Lines

For Exercises 14 and 15, are ℓ_1 and ℓ_2 perpendicular? Explain.

15.

No; slope of ℓ_1 is -1 and slope of ℓ_2 is $\frac{5}{7}$.

Yes; slope of ℓ_1 is -2 and slope of ℓ_2 is $\frac{1}{2}$.

Write an equation of the line perpendicular to the given line that contains *D*.

16.
$$D(6, 2)$$
; $y = -3x + 5$
 $y = \frac{1}{3}x$

17.
$$D(0, -3)$$
; $y = \frac{1}{2}x - 7$
 $y = -2x - 3$

18.
$$D(-8, 1)$$
; $y = -\frac{2}{3}x + 4$
 $y = \frac{3}{2}x + 13$

19.
$$D(2, 2)$$
; $y = 5x + 3$
 $y = -\frac{1}{5}x + 2\frac{2}{5}$

- **20.** Think About a Plan Line ℓ_1 contains (-2, 1) and (4, 3) and line ℓ_2 contains (5, 3) and (3, g). What value of g makes ℓ_1 and ℓ_2 perpendicular? 9
 - For ℓ_1 and ℓ_2 to be perpendicular, what must be true of their slopes? Their product must be -1.
 - What equation is true if $\ell_1 \perp \ell_2$?

$$\frac{3-1}{4+2} \times \frac{g-3}{3-5} = -1$$

- **21.** A classmate plotted the following points: A(-3, 2), B(-1, 4), and C(1, 2). Where should the classmate plot point *D* so that the quadrilateral formed has perpendicular sides? (-1, 0)
- **22. Open-Ended** Write the coordinates of a set of points which can be found on a line perpendicular to the line containing points A(5, 3) and B(8, 5). Answers will vary. Check that students' lines have a slope of $\frac{-3}{2}$.