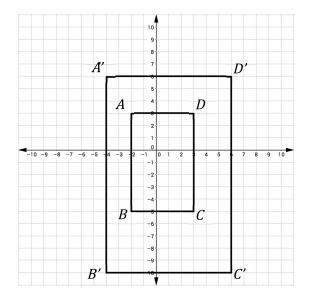

<u>Section 4 – Topic 8</u> <u>Dilation of Polygons</u>

How is a *dilation* different from a translation, reflection, and rotation?

Consider the figures below.

Is Figure B a dilation of Figure A? Justify your answer.

What is the scale factor?


Is Figure A a dilation of Figure B? Justify your answer.

What is the scale factor?

We often represent a dilation with the following notation:

$$D_k = k(x, y)$$

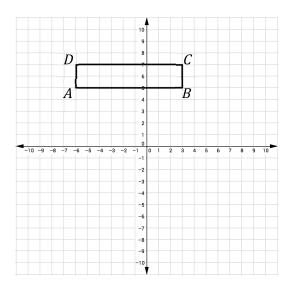
Consider the dilation of quadrilateral ABCD below.

What do you notice about the dilation represented in the figure above?

Let's Practice!

1. Pentagon *PENTA* has coordinates P(0,0), E(4,4), N(8,4), T(8,-4), and A(4,-4) and is dilated at the origin with a scale factor of $\frac{3}{4}$.

What are the coordinates of P'E'N'T'A'?

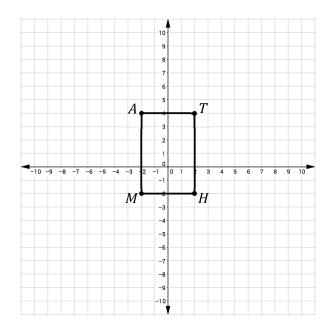

Try It!

2. Quadrilateral *PINT* is dilated at the origin with a scale factor of $\frac{5}{3}$.

Describe Quadrilateral *PINT* and Quadrilateral *P'I'N'T'* by filling in the table below with the most appropriate answer.

Quadrilateral PINT			Quadrilateral P'I'N'T'		
(x,y)			(,)
P(3,3)			P'(,)
I(,)	I'(10,15)		
N(,)	N'(15, -5)		
T(-3, -6)			T'(,)

3. Consider rectangle ABCD.



Dilate ABCD by a scale factor of $\frac{1}{2}$ using a center of dilation of (1,1). Draw A'B'C'D' on the same coordinate plane.

BEAT THE TEST!

1. Consider Quadrilateral MATH on the figure below.

Quadrilateral MATH is dilated by a scale factor of 0.5 centered at (-2, -2) to create quadrilateral M'A'T'H'.

What is the difference between the y-coordinate of A' and the y-coordinate of T'?

The difference is units.

2. Triangle PRA was dilated by a scale factor of 3 centered at the origin to create triangle P'R'A', which has coordinates P'(-6,-12), R'(-18,-6), A'(-6,-6). Write the coordinates of the vertices of triangle PRA in the spaces provided below.

P(_____)

 $R(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$

A(_____, ____