Introduction to Polygons – Part 2 Compositions of Transformations of Polygons – Part 1 Independent Practice

- 1. How is the movement of a basketball during a game a real life example of a Composition of Transformations?
- 2. Next to each composition of transformations, write the letter for the corresponding graph from the options below.

Glide Reflection	Composition of isometries (translation, then rotation)
Double Reflection	Composition of isometries (translation, then reflection)

Β.

D.

3. Consider the figure below and represent a composition of isometries by reflecting the figure over the x-axis and then translating the resulting image following the function rule $(x, y) \rightarrow (x + 1, y - 2)$.

- 4. Which of the following is **not** a composition of isometries?
 - A Reflection over x = 2, then rotation 90° clockwise about the origin
 - ^B Dilation with scale factor $\frac{1}{2}$, then rotation 270° clockwise about the origin
 - C Translation $(x, y) \rightarrow (x 2, y + 1)$, then reflection over the x-axis
 - **D** Reflection over the x-axis, then reflection over the y-axis

5. Dilate the figure below with a scale factor of 1.5 centered at the origin and then rotate the figure 90° clockwise about the origin.

6. Triangle *MIA* is shown.

There are three highlights in the paragraph that show equations or phrases that are missing. For each highlight, write on the correct equation or phrase.

The vertices of \triangle MIA are M(4, 1), I(2, 3), and A(6, 5). A reflection across the line

and then across the line ______ is the same as a rotation

of ______ clockwise about the origin because the lines

MATH