Introduction to Polygons – Part 2 Symmetries of Regular Polygons Independent Practice

1. Sketch an examples of a symmetrical polygon. Explain why it is symmetrical.

2. Sketch an example of an asymmetrical polygon. Explain why it is not symmetrical.

3. Consider the rectangle below.

- Part A: If the image is reflected across the line x = 3, does the transformation result in the original pre-image?
- Part B: If the image is reflected across the line y = 3, does the transformation result in the original pre-image?

4. Complete the following paragraph.

In regular polygons,	if the number of sides, <i>n</i>	, is odd, the lines of	symmetry will pass
through a	and the	of the op	posite side. If n is
even, then the lines of symmetry will pass through two			vertices or the
of tv	wo opposite sides.		

5. Consider the rectangle below.

- Part A: Write the equation of a *horizontal* line that will map the figure onto itself after a reflection across that line.
- Part B: Write the equation of a vertical line that will map the figure onto itself after a reflection across that line.
- 6. Draw the lines of symmetry on the regular polygons below.

- 7. In a regular polygon with n sides, how many lines of symmetry are possible?
 - (A) $\frac{1}{2}n$
 - **B** n
 - © 2n
 - **D** 4n
- 8. A regular pentagon can be rotated any multiple of about its central angle to be mapped back onto itself.
- 9. Consider a regular hexagon centered at (3,4). Describe a rotation that will map this regular hexagon onto itself.
- 10. Which of the following rotations will map the regular polygon below, centered at (2,3) onto itself? Select all that apply.

- □ Rotation of 360° centered at the origin
- \square Rotation of 360° centered at (2, 3)
- \square Rotation of 90° centered at (3, 5)
- \square Rotation of 45° centered at (2, 3)
- □ Rotation of 225° centered at the origin
- \square Rotation of 270° centered at (2,3)
- \square Rotation of 181° centered at (2,3)

